The tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point $P(2, 2)$ meet the $x-$ axis at $Q$ and $R,$ respectively. Then the area(in sq. units) of the triangle $PQR$ is

  • [JEE MAIN 2019]
  • A

    $\frac {34}{15}$

  • B

    $\frac {68}{15}$

  • C

    $\frac {14}{3}$

  • D

    $\frac {16}{3}$

Similar Questions

Let $L$ is distance between two parallel normals of  , $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\,\,\,a > b$ then maximum value of $L$ is

A rod of length $12 \,cm$ moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point $P$ on the rod, which is $3\, cm$ from the end in contact with the $x-$ axis.

Define the collections $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ of ellipses and $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ of rectangles as follows : $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$

$K _1$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _1$;

$E_n$ : ellipse $\frac{x^2}{a_n^2}+\frac{y^2}{b_{n}^2}=1$ of largest area inscribed in $R_{n-1}, n>1$;

$R _{ n }$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _{ n }, n >1$.

Then which of the following options is/are correct?

$(1)$ The eccentricities of $E _{18}$ and $E _{19}$ are NOT equal

$(2)$ The distance of a focus from the centre in $E_9$ is $\frac{\sqrt{5}}{32}$

$(3)$ The length of latus rectum of $E_Q$ is $\frac{1}{6}$

$(4)$ $\sum_{n=1}^N\left(\right.$ area of $\left.R_2\right)<24$, for each positive integer $N$

  • [IIT 2019]

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]

An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is

  • [IIT 1996]