दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की लम्बवत् स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ है

  • A

    ${x^2} + {y^2} = {a^2} - {b^2}$

  • B

    ${x^2} - {y^2} = {a^2} - {b^2}$

  • C

    ${x^2} + {y^2} = {a^2} + {b^2}$

  • D

    ${x^2} - {y^2} = {a^2} + {b^2}$

Similar Questions

माना वक्रो $4\left( x ^2+ y ^2\right)=9$ तथा $y ^2=4 x$ की उभयनिष्ठ स्पर्श रेखायें बिन्दु $Q$ पर काटती है। माना दीर्घवृत्त जिसका केन्द्र मूलबिन्दु $O$ पर है, के लघुअक्ष तथा दीर्घअक्ष की लम्बाई क्रमशः $OQ$ तथा 6 के बराबर है। यदि दीर्घवृत्त की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई को क्रमशः $e$ तथा $l$ से दर्शाते है, तो $\frac{l}{ e ^2}$ बराबर है $..........$

  • [JEE MAIN 2022]

यदि दीर्घवत्त $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ तथा वत्त $x^{2}+y^{2}=4 b$, $b >4$ के प्रतिच्छेदन बिन्दु वक्र $y ^{2}=3 x ^{2}$ पर स्थित हैं, तो $b$ बराबर है

  • [JEE MAIN 2021]

बिन्दु $(2, 3)$ से जाने वाली दीर्घवृत्त $9{x^2} + 16{y^2} = 144$ की स्पर्श रेखाओं के समीकरण हैं

दीर्घवृत्त $9{x^2} + 36{y^2} = 324$, जिसकी नाभियाँ $S$ तथा $S'$ है, पर $P$ कोई बिन्दु है, तब $SP + S'P$ का मान होगा  

एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^x}=1(a > b)$, एवं एक परवलय $x^2=4(y+b)$ इस प्रकार हैं कि दीर्घवृत्त की दो नाभियाँ एवं परवलय के नाभिलम्ब के अन्तःबिंदु $(end\,points)$ एक वर्ग के शीर्ष हैं | दीर्घर्वृत की उत्केन्द्रता ?

  • [KVPY 2017]