दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की लम्बवत् स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ है

  • A

    ${x^2} + {y^2} = {a^2} - {b^2}$

  • B

    ${x^2} - {y^2} = {a^2} - {b^2}$

  • C

    ${x^2} + {y^2} = {a^2} + {b^2}$

  • D

    ${x^2} - {y^2} = {a^2} + {b^2}$

Similar Questions

यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है

  • [JEE MAIN 2014]

यदि नियताओं के बीच की दूरी नाभियों के बीच की दूरी की तीन गुनी हो तो दीर्घवृत्त की उत्केन्द्रता होगी

माना परवलय $y ^2=4 x$ की नाभिय जीवा $PQ$ इस प्रकार है कि यह बिन्दु $(3,0)$ पर $\frac{\pi}{2}$ का कोण अन्तरित करती है। माना रेखाखण्ड $PQ$, दीर्घवृत्त $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2 > b^2$ की नाभिय जीवा भी है। यदि दीर्घवृत्त $E$ की उत्केन्द्रता $e$ है, तो $\frac{1}{ e ^2}$ का मान है :

  • [JEE MAIN 2022]

यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है 

  • [JEE MAIN 2019]

दीर्घवृत्त का समीकरण जिसकी नाभि $(-1,1)$ है जिसकी नियता $x - y + 3 = 0$ तथा जिसकी उत्केन्द्रता $\frac{1}{2}$ है , होगा