बिन्दु $(2, 3)$ से जाने वाली दीर्घवृत्त $9{x^2} + 16{y^2} = 144$ की स्पर्श रेखाओं के समीकरण हैं
$y = 3,\;x + y = 5$
$y = - 3,\;x - y = 5$
$y = 4,\;x + y = 3$
$y = - 4,\;x - y = 3$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(\pm 6,0),$ नाभियाँ $(±4,0)$
दीर्घवृत्त $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$ की उत्केन्द्रता है
माना दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b$, की उत्केन्द्रता $\frac{1}{4}$ है। यदि यह दीर्घवृत्त बिन्दु $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$ से गुजरता है तो $a ^2+ b ^2$ बराबर होगा।
यदि दीर्घवृत्त $25 x ^2+4 y ^2=1$ पर स्थित बिन्दु $(\alpha, \beta)$ से परवलय $y ^2=4 x$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती है कि एक स्पर्श रेखा की प्रवणता, दूसरी स्पर्श रेखा की प्रवणता की चार गुना है, तो $(10 \alpha+5)^2+\left(16 \beta^2+50\right)^2$ का मान
दीर्घवृत्त $9 x^{2}+4 y^{2}=36$ के नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, और उत्केंद्रता ज्ञात कीजिए।