The magnitudes of vectors $\vec A,\,\vec B$ and $\vec C$ are $3, 4$ and $5$ units respectively. If $\vec A + \vec B = \vec C$, the angle between $\vec A$ and $\vec B$ is
$\frac{\pi }{2}$
${\cos ^{ - 1}}(0.6)$
${\tan ^{ - 1}}\left( {\frac{7}{5}} \right)$
$\frac{\pi }{4}$
$\vec{A}$ is a vector of magnitude $2.7$ units due east. What is the magnitude and direction of vector $4 \vec{A}$ ?
How many minimum number of coplanar vectors having different magnitudes can be added to give zero resultant
Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
Two vectors $\vec A$ and $\vec B$ have equal magnitudes. The magnitude of $(\vec A + \vec B)$ is $‘n’$ times the magnitude of $(\vec A - \vec B)$. The angle between $ \vec A$ and $\vec B$ is
The position vectors of points $A, B, C$ and $D$ are $\vec A = 3\hat i + 4\hat j + 5\hat k,\,\vec B = 4\hat i + 5\hat j + 6\hat k,\,\vec C = 7\hat i + 9\hat j + 3\hat k$ and $\vec D = 4\hat i + 6\hat j$ then the displacement vectors $\overrightarrow {AB} $ and $\overrightarrow {CD} $ are