$ \vec A,\,\vec B $ અને $ \vec C $ ના મૂલ્યો અનુક્રમે $3, 4$ અને $5$ છે. જો $ \vec A + \vec B = \vec C $ હોય, તો $ \vec A $ અને $ \vec B $ વચ્ચે કેટલો ખૂણો થશે?
$ \frac{\pi }{2} $
$ {\cos ^{ - 1}}(0.6) $
$ {\tan ^{ - 1}}\left( {\frac{7}{5}} \right) $
$ \frac{\pi }{4} $
નીચે આપેલ કોલમ $-I$ માં સદિશો ,$\vec a \,$ $\vec b \,$ અને $\vec c \,$ વચ્ચેનો સંબંધ અને કોલમ $-II$ માં ,$\vec a \,$ $\vec b \,$ અને $\vec c \,$ સદિશો $XY$ સમતલમાં નમન સાથે દર્શાવેલ છે, તો કોલમ $-I$ અને કોલમ $-II$ ને સારી રીતે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
એક મુસાફર એક નવા શહેરમાં સ્ટેશન પર ઊતરીને ટેક્સી કરે છે. સ્ટેશનથી સુરેખ રોડ પર તેની હોટલ $10 \,km$ દૂર છે. ટેક્સી ડ્રાઇવર મુસાફરને $23\, km$ લંબાઈના વાંકાચૂંકા માર્ગે $28 \,min$ માં હોટલ પર પહોંચાડે છે, તો $(a)$ ટેક્સીની સરેરાશ ઝડપ અને $(b)$ સરેરાશ વેગનું મૂલ્ય કેટલું હશે ? શું આ બંને સમાન હશે ?
એક પદાર્થ પર બે બળો કે જેમના મૂલ્યો અનુક્રમે $3\,N$ અને $4\,N$ હોય તેવા બળો લાગે છે. જો તેમના વચ્ચેનો ખૂણો $0^o$ હોય તો તેમનું પરિણામી બળ..........$N$
$\vec A$ અને $\vec B $ નો પરિણામી સદીશ $\vec R_1$ છે . વિરુદ્ધ સદીશ $\vec B $ પર પરિણામી સદીશ $\vec R_2 $ બને તો ${\rm{R}}_{\rm{1}}^{\rm{2}}\,\, + \,\,{\rm{R}}_{\rm{2}}^{\rm{2}}$ નું મૂલ્ય શું હશે ?
$x$ એકમ સમાન મૂલ્યના અને એકબીજાને $45^o$ ના ખૂણે રહેલા બે સદિશો નો પરિણામી સદિશ $\sqrt {\left( {2 + \sqrt 2 } \right)} $ એકમ હોય. તો $x$ નું મૂલ્ય શું થાય?