सदिशों $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ तथा $\mathop C\limits^ \to $के परिमाण क्रमश: $3, 4$ तथा $5$ इकाई हैं। यदि $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $, तब सदिश $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा
$\frac{\pi }{2}$
${\cos ^{ - 1}}(0.6)$
${\tan ^{ - 1}}\left( {\frac{7}{5}} \right)$
$\frac{\pi }{4}$
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
यदि $|{\mathop V\limits^ \to _1} + {\mathop V\limits^ \to _2}|\, = \,|{\mathop V\limits^ \to _1} - {\mathop V\limits^ \to _2}|$ तथा ${V_2}$ नियत हैं, तो
दो बलों, जिनमें प्रत्येक का परिमाण $F$ है, का परिणामी भी $F$ हो तो दोनों बलों के बीच कोण ....... $^o$ है
यदि $|\,\mathop A\limits^ \to + \mathop B\limits^ \to \,|\, = \,|\mathop A\limits^ \to \,| + |\,\mathop B\limits^ \to \,|$, तब $\mathop A\limits^ \to $तथा $\mathop B\limits^ \to $ के बीच का कोण ....... $^o$ होगा
दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $ तथा $\mathop C\limits^ \to $, $\mathop A\limits^ \to $ के लम्बवत है इसके अतिरिक्त यदि $|\mathop A\limits^ \to |\, = \,|\mathop C\limits^ \to |,$तो $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण होगा