The maximum and minimum magnitude of the resultant of two given vectors are $17 $ units and $7$ unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is
$14$
$16$
$18$
$13$
What is the angle between $\overrightarrow P $ and the resultant of $(\overrightarrow P + \overrightarrow Q )$ and $(\overrightarrow P - \overrightarrow Q )$
A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by
Two forces ${F_1} = 1\,N$ and ${F_2} = 2\,N$ act along the lines $x = 0$ and $y = 0$ respectively. Then the resultant of forces would be
Establish the following vector inequalities geometrically or otherwise:
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
When does the equality sign above apply?