The maximum possible number of real roots of equation ${x^5} - 6{x^2} - 4x + 5 = 0$ is
$0$
$3$
$4$
$5$
If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by
Consider a three-digit number with the following properties:
$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;
$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$
Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number
The sum of all real values of $x$ satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is ;
Let, $\alpha, \beta$ be the distinct roots of the equation $\mathrm{x}^2-\left(\mathrm{t}^2-5 \mathrm{t}+6\right) \mathrm{x}+1=0, \mathrm{t} \in \mathrm{R}$ and $\mathrm{a}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$. Then the minimum value of $\frac{\mathrm{a}_{2023}+\mathrm{a}_{2025}}{\mathrm{a}_{2024}}$ is
The set of all $a \in R$ for which the equation $x | x -1|+| x +2|+a=0$ has exactly one real root is: