If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

  • B

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 4} \right)}^{12}}}}$

  • C

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 8} \right)}^{6}}}}$

  • D

    $\frac{{{2^{6}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

Similar Questions

Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,

  • [KVPY 2016]

Let $[t]$ denote the greatest integer $\leq t .$ Then the equation in $x ,[ x ]^{2}+2[ x +2]-7=0$ has

  • [JEE MAIN 2020]

If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $

If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by

The value of $x$ in the given equation ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$is