If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

  • B

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 4} \right)}^{12}}}}$

  • C

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 8} \right)}^{6}}}}$

  • D

    $\frac{{{2^{6}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

Similar Questions

Let $\alpha$ and $\beta$ be the two disinct roots of the equation $x^3 + 3x^2 -1 = 0.$ The equation which has $(\alpha \beta )$ as its root is equal to

If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]

How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?

  • [KVPY 2009]

Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,

  • [KVPY 2020]

If $\alpha ,\beta $ and $\gamma $ are the roots of ${x^3} + px + q = 0$, then the value of ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ is equal to