If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

  • B

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 4} \right)}^{12}}}}$

  • C

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 8} \right)}^{6}}}}$

  • D

    $\frac{{{2^{6}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

Similar Questions

Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$

  • [JEE MAIN 2022]

Let $f: R -\{0\} \rightarrow(-\infty, 1)$ be a polynomial of degree $2$ , satisfying $f( x ) f\left(\frac{1}{ x }\right)=f( x )+f\left(\frac{1}{ x }\right)$. If $f(K)=-2 K$, then the sum of squares of all possible values of $K$ is :

  • [JEE MAIN 2025]

Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:

$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is

  • [KVPY 2015]

If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when

  • [IIT 1984]

Consider the following two statements

$I$. Any pair of consistent liner equations in two variables must have a unique solution.

$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,

  • [KVPY 2018]