If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

  • B

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 4} \right)}^{12}}}}$

  • C

    $\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 8} \right)}^{6}}}}$

  • D

    $\frac{{{2^{6}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

Similar Questions

The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are

Let $x$ and $y$ be two $2-$digit numbers such that $y$ is obtained by reversing the digits of $x$. Suppose they also satisfy $x^2-y^2=m^2$ for some positive integer $m$. The value of $x+y+m$ is

  • [KVPY 2014]

If the sum of the two roots of the equation $4{x^3} + 16{x^2} - 9x - 36 = 0$ is zero, then the roots are

If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$

The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is

  • [KVPY 2018]