4-2.Quadratic Equations and Inequations
hard

If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

A

$\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

B

$\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 4} \right)}^{12}}}}$

C

$\frac{{{2^{12}}}}{{{{\left( {\sin \,\theta  - 8} \right)}^{6}}}}$

D

$\frac{{{2^{6}}}}{{{{\left( {\sin \,\theta  + 8} \right)}^{12}}}}$

(JEE MAIN-2019)

Solution

$x^{2}+x \sin \theta-2 \sin \theta=0$

$\alpha+\beta=-\sin \theta$

$\alpha \beta=-2 \sin \theta$

$\text { Now, } \frac{\alpha^{12}+\beta^{12}}{\left(\frac{1}{\alpha^{12}}+\frac{1}{\beta^{12}}\right)(\alpha-\beta)^{24}}$

$=\frac{(\alpha \beta)^{12}}{(\alpha-\beta)^{24}}$

$=\frac{(\alpha \beta)^{12}}{\left((\alpha+\beta)^{2}-4 \alpha \beta\right)^{12}}$

$=\left[\frac{\alpha \beta}{(\alpha+\beta)^{2}-4 \alpha \beta}\right]^{12}$

$=\left(\frac{-2 \sin \theta}{\sin ^{2} \theta+8 \sin \theta}\right)^{12}$

$=\frac{2^{12}}{(\sin \theta+8)^{12}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.