Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?

$I$. For any $n$, the roots are distinct.

$II$. There are infinitely many values of $n$ for which both roots are real.

$III$. The product of the roots is necessarily an integer.

  • [KVPY 2016]
  • A

    $III$ only

  • B

    $I$ and $III$

  • C

    $II$ and $III$

  • D

    $I, II$ and $III$

Similar Questions

Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to

Leela and Madan pooled their music $CD's$ and sold them. They got as many rupees for each $CD$ as the total number of $CD's$ they sold. They share the money as follows: Leela first takes $10$ rupees, then Madan takes $10$ rupees and they continue taking $10$ rupees alternately till Madan is left out with less than $10$ rupees to take. Find the amount that is left out for Madan at the end, with justification.

  • [KVPY 2010]

Consider a three-digit number with the following properties:

$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;

$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$

Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number

  • [KVPY 2017]

For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is

  • [KVPY 2015]

If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]