The mean and $S.D.$ of the marks of $200$ candidates were found to be $40$ and $15$ respectively. Later, it was discovered that a score of $40$ was wrongly read as $50$. The correct mean and $S.D.$ respectively are...

  • A

    $14.98, 39.95$

  • B

    $39.95, 14.98$

  • C

    $39.95, 224.5$

  • D

    None of these

Similar Questions

The means of five observations is $4$ and their variance is $5.2$. If three of these observations are $1, 2$ and $6$, then the other two are

Let $x_1,x_2,.........,x_{100}$ are $100$ observations such that  $\sum {{x_i} = 0,\,\sum\limits_{1 \leqslant i \leqslant j \leqslant 100} {\left| {{x_i}{x_j}} \right|} }  = 80000\,\& $ mean deviation from their mean is $5,$ then their standard deviation, is-

For $(2n+1)$ observations ${x_1},\, - {x_1}$, ${x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ and $0$ where $x$’s are all distinct. Let $S.D.$ and $M.D.$ denote the standard deviation and median respectively. Then which of the following is always true

Suppose values taken by a variable $x$ are such that $a \le {x_i} \le b$, where ${x_i}$ denotes the value of $x$ in the $i^{th}$ case for $i = 1, 2, ...n.$ Then..

The frequency distribution:

$\begin{array}{|l|l|l|l|l|l|l|} \hline X & A & 2 A & 3 A & 4 A & 5 A & 6 A \\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$

 where $A$ is a positive integer, has a variance of $160 .$ Determine the value of $A$.