The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
If wrong item is omitted.
Number of observations (n) $=20$
Incorrect mean $=10$
Incorrect standard deviation $=2$
$\bar x = \frac{1}{n}\sum\limits_{i = 1}^{20} {{x_i}} $
$10 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} $
$ \Rightarrow \sum\limits_{i = 1}^{20} {{x_i}} = 200$
That is, incorrect sum of observations $=200$
Correct sum of observations $=200-8=192$
$\therefore$ Correct mean $=\frac{\text { correct sum }}{19}=\frac{192}{19}=10.1$
Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $
$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {10} \right)}^2}} } $
$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - 100} $
$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $
$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 - {{\left( 8 \right)}^2}} $
$=2080-64$
$=2016$
$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{2016}{19}-(10.1)^{2}}$
$=\sqrt{1061 \cdot 1-102 \cdot 1}$
$=\sqrt{4.09}$
$=2.02$
A data consists of $n$ observations
${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n,$ then the standard deviation of this data is
Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $\left|\overline{ x }+\overline{ y }-\sigma^2\right|$ is equal to $.................$.
Suppose a population $A $ has $100$ observations $ 101,102, . . .,200 $ and another population $B $ has $100$ observation $151,152, . . .,250$ .If $V_A$ and $V_B$ represent the variances of the two populations , respectively then $V_A / V_B$ is
The mean and variance of $8$ observations are $10$ and $13.5,$ respectively. If $6$ of these observations are $5,7,10,12,14,15,$ then the absolute difference of the remaining two observations is
The diameters of circles (in mm) drawn in a design are given below:
Diameters | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
No. of circles | $15$ | $17$ | $21$ | $22$ | $25$ |
Calculate the standard deviation and mean diameter of the circles.
[ Hint : First make the data continuous by making the classes as $32.5-36.5,36.5-40.5,$ $40.5-44.5,44.5-48.5,48.5-52.5 $ and then proceed.]