- Home
- Standard 11
- Mathematics
The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
If it is replaced by $12$
$1.98$
$1.98$
$1.98$
$1.98$
Solution
When $8$ is replaced by $12$
Incorrect sum of observations $=200$
$\therefore$ Correct sum of observations $=200-8+12=204$
$\therefore$ Correct mean $=\frac{\text { Correct sum }}{20}=\frac{204}{20}=10.2$
Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 – \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 – {{\left( {\bar x} \right)}^2}} } $
$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 – {{\left( {10} \right)}^2}} } $
$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 – 100} $
$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $
$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 – {{\left( 8 \right)}^2}} $
$=2080-64+144$
$=2160$
$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{2160}{20}-(10.2)^{2}}$
$=\sqrt{108-104.04}$
$=\sqrt{3.96}$
$=1.98$
Similar Questions
Find the mean, variance and standard deviation using short-cut method
Height in cms | $70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
No. of children | $3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
Let the mean of the data
$X$ | $1$ | $3$ | $5$ | $7$ | $9$ |
$(f)$ | $4$ | $24$ | $28$ | $\alpha$ | $8$ |
be $5.$ If $m$ and $\sigma^2$ are respectively the mean deviation about the mean and the variance of the data, then $\frac{3 \alpha}{m+\sigma^2}$ is equal to $……….$.