- Home
- Standard 11
- Mathematics
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
उसे $12$ से बदल दिया जाए।
$1.98$
$1.98$
$1.98$
$1.98$
Solution
When $8$ is replaced by $12$
Incorrect sum of observations $=200$
$\therefore$ Correct sum of observations $=200-8+12=204$
$\therefore$ Correct mean $=\frac{\text { Correct sum }}{20}=\frac{204}{20}=10.2$
Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 – \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 – {{\left( {\bar x} \right)}^2}} } $
$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 – {{\left( {10} \right)}^2}} } $
$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 – 100} $
$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $
$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 – {{\left( 8 \right)}^2}} $
$=2080-64+144$
$=2160$
$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{2160}{20}-(10.2)^{2}}$
$=\sqrt{108-104.04}$
$=\sqrt{3.96}$
$=1.98$
Similar Questions
माना आंकडो
$X$ | $1$ | $3$ | $5$ | $7$ | $9$ |
$(f)$ | $4$ | $24$ | $28$ | $\alpha$ | $8$ |
का माध्य 5 है। यदि इन आंकडों के माध्य के सापेक्ष माध्य विचलन तथा प्रसरण क्रमशः $m$ तथा $\sigma^2$ हैं, तो $\frac{3 \alpha}{m+\sigma^2}$ बराबर है________
एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भौतिक शास्त्र व रसायन शास्त्र में प्राप्तांकों का माध्य व मानक विचलन नीचे दिए गए हैं
विषय | गणित | भौतिक | रसायन |
माध्य | $42$ | $32$ | $40.9$ |
मानक विचलन | $12$ | $15$ | $20$ |
किस विषय में सबसे अधिक विचलन है तथा किसमें सबसे कम विचलन है ?