The variance of $20$ observations is $5 .$ If each observation is multiplied by $2,$ find the new variance of the resulting observations.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the observations be $x_{1}, x_{2}, \ldots, x_{20}$ and $\bar{x}$ be their mean. Given that variance $=5$ and $n=20 .$ We know that

Variance   $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{20} {{{\left( {{x_i} - \bar x} \right)}^2}} $

i.e., $5 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{{\left( {{x_i} - \bar x} \right)}^2}} $

or    $\sum\limits_{i = 1}^{20} {{{\left( {{x_i} - \bar x} \right)}^2}}  = 100$        .......$(1)$

If each observation is multiplied by $2,$ and the new resulting observations are $y_{i},$ then

$y_{i}=2 x_{i} \text { i.e., } x_{i}=\frac{1}{2} y_{i}$

Therefore $\bar y = \frac{1}{n}\sum\limits_{i = 1}^{20} {{y_i}}  = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {2{x_i} = 2.\frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} } $

i.e.  $\bar{y}=2 \bar{x} \quad$ or $\quad \bar{x}=\frac{1}{2} \bar{y}$

Substituting the values of $x_{i}$ and $\bar{x}$ in $(1),$ we get

${\sum\limits_{i = 1}^{20} {\left( {\frac{1}{2}{y_i} - \frac{1}{2}\bar y} \right)} ^2} = 100$ i.e.,  $\sum\limits_{i = 1}^{20} {{{\left( {{y_i} - \bar y} \right)}^2} = 400} $

Thus the variance of new observations $=\frac{1}{20} \times 400=20=2^{2} \times 5$

Similar Questions

Let $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ and $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ If mean and variance of elements of $Y$ are $17$ and $216$ respectively then $a + b$ is equal to 

  • [JEE MAIN 2020]

Suppose a population $A $ has $100$ observations $ 101,102, . . .,200 $ and another population $B $ has $100$ observation $151,152, . . .,250$ .If $V_A$ and $V_B$ represent the variances of the two populations , respectively then $V_A / V_B$ is

  • [AIEEE 2006]

Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of $100$ consecutive positive integers $a _1, a _2, a _3, \ldots ., a _{100}$ is $25$. Then $S$ is

  • [JEE MAIN 2023]

The mean and $S.D.$ of the marks of $200$ candidates were found to be $40$ and $15$ respectively. Later, it was discovered that a score of $40$ was wrongly read as $50$. The correct mean and $S.D.$ respectively are...

Determine the mean and standard deviation for the following distribution:

$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\ \hline \end{array}$