$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि दो प्रेक्षण $6$ तथा $8$ हैं, तो शेष $5$ प्रेक्षणों का प्रसरण है
$\frac{92}{5}$
$\frac{134}{5}$
$\frac{536}{25}$
$\frac{112}{5}$
आँकड़ों के एक समूह में $n$ प्रेक्षण : $x _{1}, x _{2}, \ldots, x _{ n }$ हैं। यदि $\sum_{ i =1}^{ n }\left( x _{ i }+1\right)^{2}=9 n$ तथा $\sum_{ i =1}^{ n }\left( x _{ i }-1\right)^{2}=5 n$ है, तो इन आँकड़ों का मानक विचलन है
यदि आरोही क्रम में लिखी संख्याओं $3,5,7,2 k$, $12,16,21,24$ का माध्यिका के सापेक्ष माध्य विचलन 6 है, तो माध्यिका है
माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |