- Home
- Standard 11
- Mathematics
આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો.
$4,8$
$4,8$
$4,8$
$4,8$
Solution
Let the remaining two observations be $x$ and $y$.
Therefore, the observations are $6,7,10,12,12,13, x, y$
Mean, $\bar{x}=\frac{6+7+10+12+12+13+x+y}{8}=9$
$\Rightarrow 60+x+y=72$
$\Rightarrow x+y=12$ ………..$(1)$
Variance $ = 9.25 = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} – \bar x} \right)}^2}} $
$9.25=\frac{1}{8}[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(4)^{2}$
$+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}]$
$9.25=\frac{1}{8}\left[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162\right]$ ……..[ using $(1)$ ]
$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$
$9.25=\frac{1}{8}\left[x^{2}+y^{2}-6\right]$
$\Rightarrow x^{2}+y^{2}=80$ ………$(2)$
From $(1),$ we obtain
$x^{2}+y^{2}+2 x y=144$ ……..$(3)$
From $(2)$ and $(3),$ we obtain
$2 x y=64$ ……….$(4)$
Subtracting $(4)$ from $(2),$ we obtain
$x^{2}+y^{2}-2 x y=80-64=16$
$\Rightarrow x-y=\pm 4 $ ………..$(5)$
Therefore, from $(1)$ and $(5),$ we obtain
$x=8$ and $y=4,$ when $x-y=4$
$x=4$ and $y=8,$ when $x-y=-4$
Thus, the remaining observations are $4$ and $8$
Similar Questions
નીચે આપેલ માહિતીનું વિચરણ શોધો.
વસ્તુ નું કદ |
$3.5$ |
$4.5$ |
$5.5$ |
$6.5$ |
$7.5$ |
$8.5$ |
$9.5$ |
આવ્રુતિ |
$3$ |
$ 7$ |
$22$ |
$60$ |
$85$ |
$32$ |
$8$ |