આઠ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $9$ અને $9.25$ છે, જો આમાંથી છ અવલોકનો $6, 7, 10, 12, 12$ અને $13$ હોય, તો બાકીનાં બે અવલોકનો શોધો.
Let the remaining two observations be $x$ and $y$.
Therefore, the observations are $6,7,10,12,12,13, x, y$
Mean, $\bar{x}=\frac{6+7+10+12+12+13+x+y}{8}=9$
$\Rightarrow 60+x+y=72$
$\Rightarrow x+y=12$ ...........$(1)$
Variance $ = 9.25 = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \bar x} \right)}^2}} $
$9.25=\frac{1}{8}[(-3)^{2}+(-2)^{2}+(1)^{2}+(3)^{2}+(4)^{2}$
$+x^{2}+y^{2}-2 \times 9(x+y)+2 \times(9)^{2}]$
$9.25=\frac{1}{8}\left[9+4+1+9+9+16+x^{2}+y^{2}-18(12)+162\right]$ ........[ using $(1)$ ]
$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$
$9.25=\frac{1}{8}\left[x^{2}+y^{2}-6\right]$
$\Rightarrow x^{2}+y^{2}=80$ .........$(2)$
From $(1),$ we obtain
$x^{2}+y^{2}+2 x y=144$ ........$(3)$
From $(2)$ and $(3),$ we obtain
$2 x y=64$ ..........$(4)$
Subtracting $(4)$ from $(2),$ we obtain
$x^{2}+y^{2}-2 x y=80-64=16$
$\Rightarrow x-y=\pm 4 $ ...........$(5)$
Therefore, from $(1)$ and $(5),$ we obtain
$x=8$ and $y=4,$ when $x-y=4$
$x=4$ and $y=8,$ when $x-y=-4$
Thus, the remaining observations are $4$ and $8$
એક વિદ્યાર્થીએ $100$ અવલોકનોનો મધ્યક $40$ અને પ્રમાણિત વિચલન $5.1$ મેળવ્યા છે, પરંતુ એણે ભૂલથી એક અવલોકન $40$ ને બદલે $50$ લઈ લીધું હતું, તો સાચો મધ્યક અને પ્રમાણિત વિચલન શું છે?
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
$6,7,10,12,13,4,8,12$
$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ?
આવુતિ વિતરણ
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
નુંવિચરણ જો $160$ હોય તો $\mathrm{c} \in \mathrm{N}$ નું મૂલ્ય ............ છે.