The mean intensity of radiation on the surface of the Sun is about $10^{8}\,W/m^2.$ The $rms$ value of the corresponding magnetic field is closet to

  • [JEE MAIN 2019]
  • A

    $1\,T$

  • B

    $10^2\,T$

  • C

    $10^{-2}\,T$

  • D

    $10^{-4}\,T$

Similar Questions

The magnetic field of an electromagnetic wave is given by

$\vec B = 1.6 \times {10^{ - 6}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {2\hat i + \hat j} \right)\frac{{Wb}}{{{m^2}}}$ The associated electric field will be

  • [JEE MAIN 2019]

A mathematical representation of electromagnetic wave is given by the two equations $E = E_{max}\,\, cos (kx -\omega\,t)$ and $B = B_{max} cos\, (kx -\omega\,t),$ where $E_{max}$ is the amplitude of the electric field and $B_{max}$ is the amplitude of the magnetic field. What is the intensity in terms of $E_{max}$ and universal constants $μ_0, \in_0.$

A $27\, mW$ lager beam has a cross -sectional area of $10\, mm^2$. The magnitude of the maximum electric field in this electromagnetic wave is given by:........$kV/m$ [Given permittivity of space ${ \in _0} = 9 \times {10^{ - 12}}\, SI\, units$, speed of light $c = 3 \times 10^8\, m/s$]

  • [JEE MAIN 2019]

For a plane electromagnetic wave, the magnetic field at a point $x$ and time $t$ is

$\overrightarrow{ B }( x , t )=\left[1.2 \times 10^{-7} \sin \left(0.5 \times 10^{3} x +1.5 \times 10^{11} t \right) \hat{ k }\right] T$

The instantaneous electric field $\overrightarrow{ E }$ corresponding to $\overrightarrow{ B }$ is : (speed of light $\left.c=3 \times 10^{8} ms ^{-1}\right)$

  • [JEE MAIN 2020]

What physical quantity is the same for $X-$rays of wavelength $10^{-10} \;m ,$ $red$ light of wavelength $6800\; \mathring A$ and radiowaves of wavelength $500 \;m ?$