सैकण्ड लोलक का माध्य आवर्तकाल $2$ सैकण्ड है तथा आवर्तकाल में माध्य निरपेक्ष त्रुटि $0.05$ सैकण्ड है। अधिकतम संभावित त्रुटि के साथ आवर्तकाल को किस प्रकार लिखा जाना चाहिये
$(2.00 \pm 0.01) s$
$(2.00 \pm 0.025) s$
$(2.00 \pm 0.05) s$
$(2.00 \pm 0.10) s$
एक भौतिक राशि $A =\frac{ P ^{3} Q ^{2}}{\sqrt{ R } S }$ के मापन के लिये, $P , Q , R$ तथा $S$ के मापन में प्रतिशत त्रुटियाँ क्रमशः $0.5 \%, 1 \%, 3 \%$ और $1.5 \%$ हैं। $A$ के मान में अधिकतम प्रतिशत त्रुटि ........... $\%$ होगी
एक भौतिक राशि $X = {M^a}{L^b}{T^c}$ द्वारा प्रदर्शित है तथा $M,L$ एवं $T$ के मापन में प्रतिशत त्रुटि क्रमश: $\alpha ,\beta $ व $\gamma $ हे तो X में अधिकतम प्रतिशत त्रुटि होगी
तीन विद्यार्थी $S_{1}, S_{2}$ तथा $S_{3}$ गुरूत्वीय त्वरण $( g )$ के मापन के लिये सरल लोलक की सहायता से एक प्रयोग करते है। वे अलग-अलग लम्बाई के लोलको का उपयोग करते है तथा दोलनों की भिन्न-भिन्न संख्या के लिये समय दर्ज करते है। ये प्रेक्षण निम्न तालिका में दिये गये है
Student No. | Length of pendulum $(cm)$ | No. of oscillations $(n)$ | Total time for oscillations | Time period $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(लम्बाई का अल्पतमांक $=0.1 \,m$ समय का अल्पतमांक $=0.1\, s$ )
यदि $E _{1}, E _{2}$ तथा $E _{3}$ क्रमशः विद्यार्थी $1,2$ व $3$ के लिये ' $g$ ' में प्रतिशत त्रुटि हो तो किस विद्यार्थी द्वारा न्यूनतम प्रतिशत त्रुटि प्राप्त की गयी?
अंर्तरास्ट्रीय एवोगाड्रो कोआर्डिनशन परियोजना (The International Avogadro Coordination Project) ने क्रिस्टलीय सिलिकन का उपयोग कर विश्व का सबसे सटीक गोलक बनाया है। इस गोलक का व्यास $9.4 \,cm$ है, तथा व्यास मापने में अनिश्रितता $0.2 \,nm$ है | क्रिस्टल में परमाणु, $a$ भुजा वाले घनों में संकुलित है। घन की भुजा को $2 \times 10^{-9}$ सापेक्षिक त्रुटि से मापा जाता है, एवं प्रत्येक घन में $8$ परमाणु हैं। गोलक के द्रव्यमान में सापेक्षिक त्रुटि निम्न में से किस के करीब होगी ? (मान लीजिए कि सिलिकन का मोलर द्रव्यमान एवं एवोगाड्रो संख्या के मान एकदम सटीक रूप से मालूम हैं।)
किसी वस्तु के वेग के मापन में $50\%$ धनात्मक त्रुटि है, तो गतिज ऊर्जा के मापन में त्रुटि ............ $\%$ होगी