$g$ के मापन में हुई प्रतिशत न्रुटि है :(दिया है: $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1)\,cm$, $T =(100 \pm 1)\,s )$

  • [NEET 2022]
  • A

    $2$

  • B

    $5$

  • C

    $3$

  • D

    $7$

Similar Questions

किसी सरल लोलक का आवर्त, $T=2 \pi \sqrt{\frac{L}{g}}$ है। $L$ का मापित मान $20.0\, cm$ है, जिसकी यथार्थता $1\, mm$ है। इस लोलक के $100$ दोलनों का समय $90\; s$ है, जिसे $1 \;s$ विभेदन की घड़ी से मापा गया है। तो $g$ के निर्धारण में यथार्थता ........... $\%$ होगी

  • [JEE MAIN 2015]

एक बेलन की लम्बाई $0.1 \,cm$ अल्पतमांक की मीटर छड़ से मापी जाती है। इसका व्यास $0.01\, cm $ अल्पतमांक के वर्नियर कैलीपर्स से मापा जाता है। यदि बेलन की लम्बाई $5.0 \,cm$ तथा त्रिज्या $2.0 \,cm$ हो तो इसके आयतन की गणना में प्रतिशत त्रुटि ......... $\%$ होगी

प्रतिरोध $R=V / I,$ जहाँ $V=$ $(100 \pm 5) V$ एवं $I=(10 \pm 0.2) A$ है। $R$ में प्रतिशत त्रुटि ज्ञात कीजिए।

किसी तार का प्रतिरोध उसमें प्रवाहित धारा तथा छोड़ों के बीच विभवान्तर का मापन कर प्राप्त किया जा सकता है। यदि धारा तथा विभवान्तर के मापन में प्रत्येक $3\, \%$ की त्रुटि प्राप्त होती है, तो तार के प्रतिरोघ के मान में प्रतिशत त्रुटि ($\%$ में) ज्ञात कीजिये।

  • [AIEEE 2012]

किसी सरल लोलक का आवर्तकाल, $T =2 \pi \sqrt{\frac{ L }{ g }}$ है। इस लोलक की मापित लम्बाई, जिसे उस मीटर स्केल से मापा गया है जिसका अल्पतमांश $1 \,mm$ है, $1.0\, m$ है, तथा इसके एक दोलन का समय, जिसे $0.01\, s$ का विभेदन कर सकने वाली विराम घड़ी द्वारा मापा गया है, $1.95 \,s$ है। $g$ का मान ज्ञात करने में होने वाली त्रुटि की प्रतिशतता होगी। ($\%$ में)

  • [JEE MAIN 2021]