त्रिभुज, जिसके शीर्ष $A\;(0,\;b),\;B\;(0,\;0)$ व $C\;(a,\;0)$ हैं, की माध्यिकायें $AD$ तथा $BE$ परस्पर लम्बवत् होंगी, यदि
$a = \sqrt 2 \;b$
$a = - \sqrt 2 \;b$
दोनों $(a)$ व $(b)$
इनमें से कोई नहीं
एक सरल रेखा, जो एक अचर बिन्दु $(2,3)$ से होकर जाती है, निर्देशांक अक्षों को दो विभिन्न बिन्दुओं $P$ तथा $Q$ पर प्रतिच्छेद करती है। यदि $O$ मूल बिन्दु है तथा आयत $O P R Q$ को पूरा किया जाता है तो $R$ का बिन्दुपथ है
उन सरल रेखाओं के समीकरण, जो अक्षों के साथ समकोण त्रिभुज बनाते हैं, जिसका क्षेत्रफल $6$ वर्ग इकाई एवं कर्ण $5$ इकाई है
मान लीजिए $m, n$ वास्तविक संख्याएँ इस तरह है: $0 \leq m \leq \sqrt{3}$ तथा $-\sqrt{3} \leq n \leq 0$ |एक तल, जिस पर बिन्दु $(x, y)$ असमानताएँ $(inequalities)$ $y \geq 0, y-3 \leq m x, y-3 \leq n x$ को संतुश्श करती है, का न्यूनतम संभावित क्षेत्रफल क्या होगा?
किसी त्रिभुज की भुजाएँ $x - 3y = 0$, $4x + 3y = 5$ व $3x + y = 0$ हैं, तो रेखा $3x - 4y = 0$ गुजरती है
कार्तीय तल में एक चतुर्भुज खींचिए जिसके शीर्ष $(-4,5),(0,7),(5,-5)$ और $(-4,-2)$ हैं। इसका क्षेत्रफल भी ज्ञात कीजिए।