एक त्रिभुज का परिकेंद्र मूल बिन्दु पर है तथा उसका केन्द्रक, बिन्दुओं $\left(a^{2}+1, a^{2}+1\right)$ तथा $(2 a,-2 a)$, $a \neq 0$ को मिलाने वाले रेखाखंड का मध्य बिंदु है, तो किसी $a$ के लिए इस त्रिभुज का लंब केन्द्र जिस रेखा पर स्थित है, वह है
$y- 2ax\, = 0$
$y- (a^2 + 1)x\, = 0$
$y+ x\, = 0$
$(a - 1)^2x - (a + 1)^2y\, = 0$
यदि समद्विबाहु त्रिभुज के आधार के सिरे के शीर्ष $(2a,0)$ व $(0,a)$ हैं व एक भुजा का समीकरण $x = 2a$ है तब त्रिभुज का क्षेत्रफल है
यदि सरल रेखाओं $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ तथा $\frac{x}{\beta } + \frac{y}{\alpha } = 1$ के प्रतिच्छेद बिन्दु से एक चर रेखा खींची जाती है जो कि अक्षों को क्रमश:$A$ व $B$ पर मिलती है तो $AB$ के मध्य बिन्दु का बिन्दुपथ होगा
उस बिन्दु का बिन्दुपथ जो कि सरल रेखाओं $3x + 4y - 11 = 0$ व $12x + 5y + 2 = 0$ से समान दूरी पर स्थित है एवं मूल बिन्दु के समीप है, है
माना एक त्रिभुज, रेखाओं $L _1: 2 x +5 y =10$; $L _2:-4 x +3 y =12$ द्वारा परिबद्ध है तथा रेखा $L _3$ जो बिन्दु $P (2,3)$ से गुजरती है रेखा $L _2$ को $A$ पर तथा रेखा $L _1$ को $B$ पर काटती है। यदि बिन्दु $P$, रेखाखण्ड $AB$ को आंतरिक रूप से $1: 3$ के अनुपात में विभाजित करता है, तो त्रिभुज का क्षेत्रफल के बराबर है
$a$ भुजा का एक वर्ग $x$ -अक्ष के ऊपर स्थित है, वर्ग का एक शीर्ष मूलबिन्दु पर है। मूलबिन्दु से गुजरने वाली भुजा $x$ - अक्ष की धनात्मक दिशा से $\alpha $ कोण बनाती है, $\left( {0 < \alpha < \frac{\pi }{4}} \right)$. वर्ग के मूल बिन्दु से नहीं गुजरने वाले विकर्ण का समीकरण है