संख्या  $111......1$ ($91$ बार) 

  • A

    अभाज्य नहीं है

  • B

    एक सम संख्या है

  • C

    एक विषम संख्या नहीं है

  • D

    इनमें से कोई नहीं

Similar Questions

${(1 + x - 3{x^2})^{2163}}$ के विस्तार में गुणांकों का योग होगा

  • [IIT 1982]

$\sum\limits_{n = 1}^\infty  {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ का मान है

माना $\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^2\right)^{10}=\sum_{\mathrm{i}=0}^{20} \mathrm{p}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{N}$ है। यदि $\mathrm{p}_1=20$ तथा $\mathrm{p}_2=210$ हैं, तो $2(\mathrm{a}+\mathrm{b}+\mathrm{c})$ बराबर है :

  • [JEE MAIN 2023]

यदि $(1+\mathrm{x})^{10}$ के द्विपद प्रसार में $\mathrm{x}^{10-\mathrm{r}}$ का गुणांक $\mathrm{a}_{\mathrm{r}}$ है, तो $\sum_{\mathrm{r}=1}^{10} \mathrm{r}^3\left(\frac{\mathrm{a}_{\mathrm{r}}}{\mathrm{a}_{\mathrm{r}-1}}\right)^2$ बराबर है

  • [JEE MAIN 2023]

$\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}}{ }^{23} \mathrm{C}_{\mathrm{r}}$ का मान है

  • [JEE MAIN 2023]