10-1.Circle and System of Circles
hard

વર્તુળો $x^2 +y^2 - 8x - 2y + 1 = 0$ અને $x^2 + y^2 + 6x + 8y = 0$ ને સામાન્ય સ્પર્શકોની સંખ્યા મેળવો. 

A

એક 

B

ચાર 

C

બે 

D

ત્રણ 

(AIEEE-2012)

Solution

Given circles are 

${x^2} + {y^2} – 8x + 2y + 1 = 0\,\,$

and ${x^2} + {y^2} + 6x + 8y + 1 = 0\,\,$

Their centres and radius are 

${C_1}\left( {4,1} \right),{r_1} = \sqrt {16}  = 4$

${C_2}\left( { – 3, – 4} \right),{r_1} = \sqrt {25}  = 5$

Now,  ${C_1}{C_2} = \sqrt {49 + 25}  = \sqrt {74} $

${r_1} – {r_2} =  – 1,{r_1} + {r_2} = 9$

Since, ${r_1} – {r_2} < {C_1}{C_2} < {r_1} + {r_2}$

$\therefore $ Number of common tangents $=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.