The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is

  • [JEE MAIN 2015]
  • A

    $4$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :

If the circle ${x^2} + {y^2} + 6x - 2y + k = 0$ bisects the circumference of the circle ${x^2} + {y^2} + 2x - 6y - 15 = 0,$ then $k =$

The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing  through the points of intersection of the two circles $x^2 + y^2 + 5x -8y + 1 =0$ and $x^2 + y^2-3x + 7y -25 = 0$ is-

The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$

The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is