10-1.Circle and System of Circles
hard

वृत्तों ${x^2} + {y^2} = 4$ और ${x^2} + {y^2} - 6x - 8y = 24$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है

A

$0$

B

$1$

C

$3$

D

$4$

(IIT-1998)

Solution

(b) ${S_1} \equiv {x^2} + {y^2} = {2^2}$,

${S_2} \equiv {(x – 3)^2} + {(y – 4)^2} = {7^2}$

$\therefore $ केन्द्र  ${C_1} = (0,\;0),$${C_2} = (3,\,4)$

तथा त्रिज्यायें ${r_1} = 2,\;{r_2} = 7$

$\therefore \;{C_1}{C_2} = 5,$  ${r_2} – {r_1} = 5$

अर्थात् वृत्त अन्त:स्पर्श होंगे।

अत: केवल एक उभयनिष्ठ स्पर्श रेखा होगी।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.