- Home
- Standard 11
- Mathematics
સમીકરણ $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$ ના ભિન્ન કેટલા ઉકેલો મળે છે ?
$3$
$5$
$4$
એક પણ નહી
Solution
$\sec \theta+\tan \theta=\sqrt{3}$
$\Rightarrow \quad 1+\sin \theta=\sqrt{3} \cos \theta(\cos \theta \neq 0)$
$\Rightarrow \quad \sqrt{3} \cos \theta-\sin \theta=1$
$\Rightarrow \quad \frac{\sqrt{3}}{2} \cos \theta-\frac{1}{2} \sin \theta=\frac{1}{2}$
$\Rightarrow \quad \cos \theta \cos \frac{\pi}{6}-\sin \theta \sin \frac{\pi}{6}=\cos \frac{\pi}{3}$
$\Rightarrow \quad \cos \left(\theta+\frac{\pi}{6}\right)=\cos \frac{\pi}{3}$
$\Rightarrow \quad \theta+\frac{\pi}{6}=2 n \pi \pm \frac{\pi}{3}$ $\left( {n \in Z} \right)$
$\Rightarrow \quad \theta=2 n \pi-\frac{\pi}{6} \pm \frac{\pi}{3}$ $\left( {n \in Z} \right)$
$=2 n \pi+\frac{\pi}{6} \text { or } 2 n \pi-\frac{\pi}{2}$
But we reject the values $\theta=2 \mathrm{n} \pi-\frac{\pi}{2}$
$\because \quad \cos \theta=0$ for this values of $\theta$
$\therefore $ $\theta=2 \mathrm{n} \pi+\frac{\pi}{6}, \mathrm{n} \in \mathrm{I}$
Thus, $\theta=\frac{\pi}{6}$ is the only value of $\theta \in[0,2, \pi]$