If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is

  • A

    $2n\pi \pm \frac{\pi }{3}$

  • B

    $2n\pi + \frac{\pi }{4}$

  • C

    $n\pi \pm \frac{\pi }{3}$

  • D

    $n\pi - \frac{\pi }{3}$

Similar Questions

The number of elements in the set $S=$ $\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-\right.$ $\left.10 \cos ^{2} \theta+5=0\right\}$ is

  • [JEE MAIN 2022]

If $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, then $\theta = $

If $0 \le x < 2\pi $ , then the number of real values of $x,$ which satisfy the equation  $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is  . .  .

  • [JEE MAIN 2016]

The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]