The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is

  • [JEE MAIN 2020]
  • A

    $8$

  • B

    $5$

  • C

    $11$

  • D

    $12$

Similar Questions

Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is

The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to 

If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$

  • [JEE MAIN 2021]

The number of solution of the given equation $a\sin x + b\cos x = c$ , where $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ is

The general value of $\theta $ satisfying ${\sin ^2}\theta + \sin \theta = 2$ is