Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes

  • [KVPY 2011]
  • A

    $1$

  • B

    $x$

  • C

    $\frac{x^2+(a+b+c)(a b+b c+c a)}{(a-b)(b-c)(c-a)}$

  • D

    $0$

Similar Questions

If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are

The solutions of the quadratic equation ${(3|x| - 3)^2} = |x| + 7$ which belongs to the domain of definition of the function $y = \sqrt {x(x - 3)} $ are given by

If $x$ is real, then the value of $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ does not lie between

Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]

Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^2-x-1=0$, where $\alpha \neq \beta$. For $n=0,1,2, \ldots$, let $a_n=$ $p \alpha^n+q \beta^n$.

$FACT$ : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.

($1$) $a_{12}=$

$[A]$ $a_{11}-a_{10}$  $[B]$ $a_{11}+a_{10}$  $[C]$ $2 a_{11}+a_{10}$   $[D]$ $a_{11}+2 a_{10}$

($2$) If $a_4=28$, then $p+2 q=$

$[A] 21$   $[B] 14$   $[C] 7$    $[D] 12$

 answer the quetion ($1$) and ($2$)

  • [IIT 2017]