Gujarati
Hindi
4-2.Quadratic Equations and Inequations
normal

Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes

A

$1$

B

$x$

C

$\frac{x^2+(a+b+c)(a b+b c+c a)}{(a-b)(b-c)(c-a)}$

D

$0$

(KVPY-2011)

Solution

(a)

Given,

$P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$

$P(a)=1+0+0=1$

$P(b)=0+1+0=1$

$P(c)=0+0+1=1$

$P(x)$ is a polynomial of degree atmost $2$ and also attains same value i.e.$1$ for distinct values of $x$ (i.e. $a, b, c$ ).

$\therefore P(x)$ is an identity with only value equal to $1$ for all $R$.

$\therefore \frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.