$2^x+3^y=5^{x y}$ को संतुष्ट करने वाले घनात्मक पूर्णांकों को क्रमित युग्मों $(x, y)$ की संख्या है.
$1$
$2$
$5$
अनंत
यदि द्विघाती समीकरण, $x^{2}+x \sin \theta-2 \sin \theta=0, \theta \in\left(0, \frac{\pi}{2}\right) \text {, }$ के मूल $\alpha$ तथा $\beta$ हैं, तो $\frac{\alpha^{12}+\beta^{12}}{\left(\alpha^{-12}+\beta^{-12}\right)(\alpha-\beta)^{24}}$ बराबर हैं
यदि ${x^2} + x + a = 0$ के मूल $a$ से अधिक हैं, तब
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है
माना [ $t ], t$ से कम या बराबर महत्तम पूर्णांक फलन को दर्शाता है। तब $x$ में समीकरण $[ x ]^{2}+2[ x +2]-7=0$
यदि $x$ वास्तविक है, तो व्यंजक $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ के अधिकतम एवं न्यूनतम मान होंगे