$2^x+3^y=5^{x y}$ को संतुष्ट करने वाले घनात्मक पूर्णांकों को क्रमित युग्मों $(x, y)$ की संख्या है.
$1$
$2$
$5$
अनंत
यदि समीकरण, $x ^{2}+5(\sqrt{2}) x +10=0$, के $\alpha$ तथा $\beta$, $\alpha>\beta$ दो मूल है तथा $P_{n}=\alpha^{n}-\beta^{n}$,( प्रत्येक धन पूर्णांक $n$ के लिए) है, तो $\left(\frac{ P _{17} P _{20}+5 \sqrt{2} P _{17} P _{19}}{ P _{18} P _{19}+5 \sqrt{2} P _{18}^{2}}\right)$ का मान है ............. |
यदि समीकरण ${x^2} + 2ax + 10 - 3a > 0$ है तथा$x \in R$, तब
समीकरण $x^{2}+|2 x-3|-4=0$, के मूलों का योगफल है
समीकरण $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^x+1\right)=0$के सभी वास्तविक मूलों का योगफल होगा
समीकरण ${(3|x| - 3)^2} = |x| + 7$ के हल जो कि फलन $y = \sqrt {x(x - 3)} $ के प्रान्त में हैं, होंगे