If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $

  • A

    $a/c$

  • B

    $-b/c$

  • C

    $b/a$

  • D

    $c/a$

Similar Questions

If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always

  • [IIT 1979]

If ${x^2} + 2ax + 10 - 3a > 0$ for all $x \in R$, then

  • [IIT 2004]

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

The sum of the solutions of the equation $\left| {\sqrt x  - 2} \right| + \sqrt x \left( {\sqrt x  - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to

  • [JEE MAIN 2019]

Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?

$I$. $4$ divides $x$ or $4$ divides $y$.

$II$. $3$ divides $x+y$ or $3$ divides $x-y$.

$III$. $5$ divides $z\left(x^2-y^2\right)$.

  • [KVPY 2017]