पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है
$3$
$2$
$0$
$4$
अन्तराल $( - 3,\,3/2)$ में ${x^2} - 3x + 3$ का न्यूनतम मान है
यदि ${x^3} + 8 = 0$ के मूल $\alpha ,\,\beta$ तथा $\gamma $ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
मान लीजिए कि $m , n$ धनात्मक पूर्णांक $(positive\,integers)$ इस प्रकार है कि $6^m+2^{m+n} 3^m+2^n=332 . m^2+m n+n^2$ व्यंजक $(expression)$, का मान क्या होगा ?
यदि $x$ वास्तविक है तथा $x + 2 > \sqrt {x + 4} $ को सन्तुष्ट करता है, तब
समीकरण |${x^2}$ + 4x + 3| + 2x + 5 = 0 के वास्तविक हलों की संख्या है