पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है
$3$
$2$
$0$
$4$
माना कि $x ^2- x -1=0$ के मूल (roots) $\alpha$ और $\beta$ हैं, जहाँ $\alpha>\beta$ है। सभी धनात्मक पूर्णांकों $n$ के लिए निम्न को परिभाषित किया गया है
$a_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}, n \geq 1$
$b_1=1 \text { and } b_n=a_{n-1}+a_{n+1}, n \geq 2.$
तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?
$(1)$ प्रत्येक $n \geq 1$ के लिए, $a _1+ a _2+ a _3+\ldots . .+ a _{ n }= a _{ n +2}-1$
$(2)$ $\sum_{ n =1}^{\infty} \frac{ a _{ n }}{10^{ n }}=\frac{10}{89}$
$(3)$ $\sum_{ n =1}^{\infty} \frac{ b _{ n }}{10^{ n }}=\frac{8}{89}$
$(4)$ प्रत्येक $n \geq 1$ के लिए, $b _{ n }=\alpha^{ n }+\beta^{ n }$
दो बहुपद $p(x), q(x)$ इस प्रकार हैं: $p(x)=x^2-5 x+a$ और $q(x)=x^2-3 x+b$ जहां $a, b$ प्राकृत संख्याएँ हैं । मान लें कि $\operatorname{hcf}(p(x), q(x))=x-1$ और $k(x)=\operatorname{lcm}(p(x), q(x))$ है। यदि बहुपद $k(x)$ के अधिकतम घात के गुणांक का मान 1 है, तो बहुपद $(x-1)+k(x)$ के शून्यकों का योग होगा:
यदि $x$ वास्तविक है तो ${x^2} - 6x + 13$ का मान कम नहीं होगा
यदि समीकरण ${x^3} - 9{x^2} + 14x + 24 = 0$ के दो मूलों का अनुपात $3 : 2$ हो तो मूल होंगे
समीकरण $2{x^2} + 3x - 9 \le 0$ का हल होगा