The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is

  • [IIT 2002]
  • A

    $( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$

  • B

    $( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$

  • C

    $( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$

  • D

    $(\sqrt 2 ,\,\infty )$

Similar Questions

Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:

  • [JEE MAIN 2021]

The number of distinct real roots of the equation $x ^{7}-7 x -2=0$ is

  • [JEE MAIN 2022]

The number of solutions of the equation $\left(\frac{9}{x}-\frac{9}{\sqrt{x}}+2\right)\left(\frac{2}{x}-\frac{7}{\sqrt{x}}+3\right)=0$ is :

  • [JEE MAIN 2025]

If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to

Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in  R$, is (where $\{.\}$ denotes fractional part function)