The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is

  • [IIT 2002]
  • A

    $( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$

  • B

    $( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$

  • C

    $( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$

  • D

    $(\sqrt 2 ,\,\infty )$

Similar Questions

If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:

  • [JEE MAIN 2017]

If the roots of ${x^2} + x + a = 0$exceed $a$, then

If $\alpha ,\beta $ and $\gamma $ are the roots of ${x^3} + px + q = 0$, then the value of ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ is equal to

Suppose $m, n$ are positive integers such that $6^m+2^{m+n} \cdot 3^w+2^n=332$. The value of the expression $m^2+m n+n^2$ is

  • [KVPY 2010]

Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be

  • [KVPY 2010]