The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is
$( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$
$( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$
$( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$
$(\sqrt 2 ,\,\infty )$
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
If $\alpha ,\beta ,\gamma$ are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-
lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation
The polynomial equation $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ has
Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes