The set of all real numbers $x$ for which ${x^2} - |x + 2| + x > 0,$ is
$( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$
$( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$
$( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$
$(\sqrt 2 ,\,\infty )$
Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:
The number of distinct real roots of the equation $x ^{7}-7 x -2=0$ is
If $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$,then $x$ is equal to
Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in R$, is (where $\{.\}$ denotes fractional part function)