The number of real roots of the equation $x | x |-5| x +2|+6=0$, is
$5$
$3$
$6$
$4$
Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.
If ${x^2} + px + 1$ is a factor of the expression $a{x^3} + bx + c$, then
The set of all $a \in R$ for which the equation $x | x -1|+| x +2|+a=0$ has exactly one real root is:
Let $\alpha, \beta ; \alpha>\beta$, be the roots of the equation $x^2-\sqrt{2} x-\sqrt{3}=0$. Let $P_n=\alpha^n-\beta^n, n \in N$. Then $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$ is equal to :
The sum of all non-integer roots of the equation $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ is