Trigonometrical Equations
normal

The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :

A

$2$

B

$3$

C

$5$

D

more than $5$

Solution

$cos \,x + cos\, 2x + cos \,3x + cos \,4x + cos\, 5 x = 0$

$2\, cos \,3x \,cos \,2x + 2\, cos \,3x \,cos\, x + cos \,3x = 0$

$cos\, 3x [2 \,cos \,2x + 2 \,cos\, x – 1] = 0$

$\left. \begin{array}{l}x = (2n – 1)\frac{\pi }{6} \Rightarrow \frac{\pi }{6},\frac{{3\pi }}{6},\frac{{5\pi }}{6} = 3\\{2^{nd}} \,\,  equation\,\, gives \,\,cos{\mkern 1mu} x = \frac{{1 \pm \sqrt 2 }}{4} = 2\end{array} \right] = 5$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.