निम्नलिखित युगपत $(simultaneous)$ समीकरण $\log _{1 / 3}(x+y)+\log _3(x-y)=2$
$2^{y^2}=512^{x+1}$ के हल युगमों $(solution\,pairs)$ $(x, y)$ की संख्या होगी
$0$
$1$
$2$
$3$
योगफल $\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ बराबर है:
असमिका ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ के लिए, $x$ के वास्तविक मानों का समुच्चय है
${\log _4}$ $18$ हैं
यदि $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab)$हो, तो निम्न में से किसका मान $ 1 $ होगा
यदि $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2$ हो, तब $A $ का मान होगा