સમીકરણની સંહતિ $x + y - z = 0, \, 3x - y - z = 0, \,x - 3y + z = 0$ ના ઉકેલની સંખ્યા મેળવો.
$0$
$1$
$2$
અનંત
સુરેખ સમીકરણ સંહતિ $3 x-2 y+z=b$ ; $5 x-8 y+9 z=3$ ; $2 x+y+a z=-1$ ને એક પણ ઉકેલ ન મળે તો,તે માટેની ક્રમયુક્ત જોડ $(a,b)$એ$\dots\dots\dots$ છે.
અહી $A=\left(\begin{array}{ccc}{[x+1]} & {[x+2]} & {[x+3]} \\ {[x]} & {[x+3]} & {[x+3]} \\ {[x]} & {[x+2]} & {[x+4]}\end{array}\right),$ કે જ્યાં $[t]$ એ મહતમ પૂર્ણાંક દર્શાવે છે . જો $\operatorname{det}(\mathrm{A})=192$ આપેલ હોય તો $\mathrm{x}$ ની કિમંતો . . . . અંતરાલમાં આવેલ છે.
જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ એ . . . . પર આધારિત હોય.
જો સમીકરણની સંહતિ, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$ એ સુસંગત ન હોય , તો $k$ ની કિમત મેળવો.
જો સમીકરણો ની જોડ $2x + 3y =\, -1; 3x + y = 2; \lambda x + 2y = \mu $ એ સુસંગત હોય તો . . . ..