निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\cos ec\, x=-2$
$\cos ec\, x=-2$
It is known that
$\cos ec\, \frac{\pi}{6}=2$
$\therefore \cos ec \left(\pi+\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$ and $\cos ec\, \left(2 \pi-\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$
i.e., $\cos ec\, \frac{7 \pi}{6}=-2$ and $\cos ec\, \frac{11 \pi}{6}=-2$
Therefore, the principal solutions are $x=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$
Now $\cos ec\, x=\cos ec\, \frac{7 \pi}{6}$
$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\cos ec\, x=\frac{1}{\sin x}\right]$
$\Rightarrow x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$.
$\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ का व्यापक हल है
समीकरण $3\cos x + 4\sin x = 6$ रखता है
यदि ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ तो $\theta $ का व्यापक मान है
यदि $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, तो $\theta $ का व्यापक मान है
यदि $\tan m\theta = \tan n\theta $, तो $\theta $ के भिन्न भिन्न मान होंगे