Gujarati
4-2.Quadratic Equations and Inequations
normal

समीकरण $x^2+y^2=a^2+b^2+c^2$, यहाँ $x, y, a, b, c$ सभी अभाज्य संख्याएँ हैं, के कितने हल हैं?

A

$0$

B

$1$

C

$1$ से अधिक परन्तु सीमित

D

अनंत

(KVPY-2021)

Solution

(a)

Any prime other than 2,3 is of the form $6 k \pm 1$

$\therefore 6 k \pm 1= p$

$6 \lambda+1= p ^2$

$(I)$ If $2 \& 3$ are not solutions

$x^2 \equiv 1(\bmod 6)$

$y ^2 \equiv 1(\bmod 6)$

LHS $\equiv 2(\bmod 6)$

$RHS \equiv 3(\bmod 6)$

$(II)$ If $2$ is not then all are odd

$LHS$ $\equiv$ Even

$RHS$ $\equiv$ Odd

$C – I$ when $x = y =2$

$a^2+b^2+2=8$

Let $a =2$ then $b ^2+ c ^2=4$

which is not possible for prime ' $b$ ' \& 'c'

$C-II$ $x =2 ; y \neq 2$

$4+ y ^2= a ^2+ b ^2+ c ^2$

Not possible

$C-III$ $x \neq 2 ; y \neq 2$

Not possible

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.