The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by
$\frac{3}{2} \le x \le 3$
$ - 3 \le x \le \frac{3}{2}$
$ - 3 \le x \le 3$
$\frac{3}{2} \le x \le 2$
The number of solution$(s)$ of the equation $ln(lnx)$ = $log_xe$ is -
The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:
$\alpha$, $\beta$ ,$\gamma$ are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ is
The sum of all integral values of $\mathrm{k}(\mathrm{k} \neq 0$ ) for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in $x$ has no real roots, is ..... .
The number of real solution of equation $(\frac{3}{2})^x = -x^2 + 5x-10$ :-