The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by

  • A

    $\frac{3}{2} \le x \le 3$

  • B

    $ - 3 \le x \le \frac{3}{2}$

  • C

    $ - 3 \le x \le 3$

  • D

    $\frac{3}{2} \le x \le 2$

Similar Questions

Let $\alpha$ and $\beta$ be the roots of $x^2-6 x-2=0$, with $\alpha>\beta$. If $a_n=\alpha^n-\beta^n$ for $n \geq 1$, then the value of $\frac{a_{10}-2 a_8}{2 a_9}$ is

  • [IIT 2011]

The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies

  • [KVPY 2012]

Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,

  • [KVPY 2017]

Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is

  • [KVPY 2020]

Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then  $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for