The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by

  • A

    $\frac{3}{2} \le x \le 3$

  • B

    $ - 3 \le x \le \frac{3}{2}$

  • C

    $ - 3 \le x \le 3$

  • D

    $\frac{3}{2} \le x \le 2$

Similar Questions

Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,

  • [KVPY 2020]

If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $

Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be

  • [KVPY 2010]

The number of solutions of $\sin ^2 \mathrm{x}+\left(2+2 \mathrm{x}-\mathrm{x}^2\right) \sin \mathrm{x}-3(\mathrm{x}-1)^2=0$, where $-\pi \leq \mathrm{x} \leq \pi$, is....................

  • [JEE MAIN 2024]

The number of real roots of the equation ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ are

  • [IIT 1982]