The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by

  • A

    $\frac{3}{2} \le x \le 3$

  • B

    $ - 3 \le x \le \frac{3}{2}$

  • C

    $ - 3 \le x \le 3$

  • D

    $\frac{3}{2} \le x \le 2$

Similar Questions

Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$

  • [JEE MAIN 2020]

The number of solutions of the equation $x ^2+ y ^2= a ^2+ b ^2+ c ^2$. where $x , y , a , b , c$ are all prime numbers, is

  • [KVPY 2021]

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

If $x$ is real, then the maximum and minimum values of expression $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ will be

The number of solutions, of the equation $\mathrm{e}^{\sin x}-2 e^{-\sin x}=2$ is

  • [JEE MAIN 2024]