Trigonometrical Equations
normal

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

A

$2$

B

$4$

C

$6$

D

none of these

Solution

$\sin ^{4} x+\cos ^{4} x=\sin x \cos x$

or $\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x=\sin x \cos x$

or $1-\frac{\sin ^{2} 2 x}{2}=\frac{\sin 2 x}{2}$

or $\sin ^{2} 2 x+\sin 2 x-2=0$

$\operatorname{or}(\sin 2 x+2)(\sin 2 x-1)=0$

or $\sin 2 x=1$

or $2 \mathrm{x}=(4 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$

or $x=(4 n+1) \frac{\pi}{4}, n \in Z$

$=\frac{\pi}{4}, \frac{5 \pi}{4} \quad(\because x \in[0,2 \pi])$

Thus, there are two solutions.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.