The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to

  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    none of these

Similar Questions

The value of the expression

$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2  sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than

The general value of $\theta $ in the equation $2\sqrt 3 \cos \theta = \tan \theta $, is

If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

If $\sin \,\theta  + \sqrt 3 \cos \,\theta  = 6x - {x^2} - 11,x \in R$ , $0 \le \theta  \le 2\pi $ , then the equation has solution for