- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
The number of terms of the $A.P. 3,7,11,15...$ to be taken so that the sum is $406$ is
A
$5$
B
$10$
C
$12$
D
$14$
Solution
(d) $S = \frac{n}{2}[2a + (n – 1)d]$
==> $406 = \frac{n}{2}\left[ {6 + (n – 1)4} \right]$
==> $812 = n\,[6 + 4n – 4]$
==> $812 = 2n + 4{n^2}$
==> $406 = 2{n^2} + n$
==> $2{n^2} + n – 406 = 0$
$ \Rightarrow $ $ = \frac{{ – 1 \pm \sqrt {1 + 4.2.406} }}{2.2}$
$ = \frac{{ – 1 \pm \sqrt {3249} }}{4}$ $=\frac{{-1 \pm 57}}{{4}}$
Taking $(+)$ sign, $n = 14$.
Standard 11
Mathematics