Gujarati
8. Sequences and Series
easy

The number of terms of the $A.P. 3,7,11,15...$ to be taken so that the sum is $406$ is

A

$5$

B

$10$

C

$12$

D

$14$

Solution

(d) $S = \frac{n}{2}[2a + (n – 1)d]$

==> $406 = \frac{n}{2}\left[ {6 + (n – 1)4} \right]$

==> $812 = n\,[6 + 4n – 4]$

==> $812 = 2n + 4{n^2}$

==> $406 = 2{n^2} + n$

==> $2{n^2} + n – 406 = 0$

$ \Rightarrow $ $ = \frac{{ – 1 \pm \sqrt {1 + 4.2.406} }}{2.2}$ 

$ = \frac{{ – 1 \pm \sqrt {3249} }}{4}$ $=\frac{{-1 \pm 57}}{{4}}$

Taking $(+)$ sign, $n = 14$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.