समांतर श्रेणी $3,7,11,15...$ के कितने पदों का योग $406$ होगा
$5$
$10$
$12$
$14$
माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है
यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है
यदि $\frac{{3 + 5 + 7 + ......{\text{upto}}\;n\;{\text{terms}}}}{{5 + 8 + 11 + ....{\text{upto}}\;10\;{\text{terms}}}} = 7$, तो $n$ का मान है
यदि समीकरण $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रमों के वर्गों के योगफल के बराबर है, तो $b{c^2},\;c{a^2},\;a{b^2}$ होंगे
यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :