The number of values of $x$ in the interval $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ for which $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21$ $-4 \cos ^{2} x$ holds, is

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $7$

  • C

    $5$

  • D

    $4$

Similar Questions

Number of solution$(s)$ of the equation $\sin 2\theta  + \cos 2\theta  =  - \frac{1}{2},\theta \in \left( {0,\frac{\pi }{2}} \right)$ is-

If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)

The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is

The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$

If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is