- Home
- Standard 11
- Mathematics
Trigonometrical Equations
hard
અંતરાલ $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ માં $x$ ની એવી કેટલી કિંમતો મળે કે જેથી $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$ થાય?
A
$2$
B
$7$
C
$5$
D
$4$
(JEE MAIN-2022)
Solution

$x \in\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$
$14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$
$=21-4\left(1-\sin ^{2} x\right)$
$=17+4 \sin ^{2} x$
$14 \operatorname{cosec} x-6 \sin ^{2} x=17$
let $\sin ^{2} x=p$
$\frac{14}{p}-6 p=17 \Rightarrow 14-6 p^{2}=17 p$
$6 p^{2}+17 p-14=0$
$p=-3.5, \frac{2}{3} \Rightarrow \sin ^{2} x=\frac{2}{3}$
$\Rightarrow \sin x=\pm \sqrt{\frac{2}{3}}$
$\therefore$ Total $4$ solutions
Standard 11
Mathematics