અંતરાલ $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ માં $x$ ની એવી કેટલી કિંમતો મળે કે જેથી $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$ થાય?
$2$
$7$
$5$
$4$
અહી $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$ હોય તો . . .
સમીકરણ યુગમો $x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ જ્યાં $x$ અને $y$ એ વાસ્તવિક હોય તેવા ઉકેલોનો ગણ ...... છે.
સમિકરણ $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ નો ઉકેલ . . . . મેળવો.
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin x+\sin 3 x+\sin 5 x=0$
સમીકરણ $\sin (9 x)+\sin (3 x)=0$ ના અંતરાલ $[0,2 \pi]$ માં ઉકેલની સંખ્યા મેળવો.