13.Statistics
medium

$a \in N$ के मानों की संख्या, ताकि $3,7,12 a, 43-a$ का प्रसरण प्राकृत संख्या हो, होगी   (Mean $=13$)

A

$0$

B

$2$

C

$5$

D

अनंत

(JEE MAIN-2022)

Solution

Mean $=13$

Variance $=\frac{9+49+144+ a ^{2}+(43- a )^{2}}{5}-13^{2} \in N$

$\Rightarrow \frac{2 a^{2}-a+1}{5} \in N$

$\Rightarrow 2 a^{2}-a+1-5 n=0$ must have solution as natural numbers

its $D=40 n-7$ always has $3$ at unit place

$\Rightarrow D$ can't be perfect square

So, a can't be integer.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.