$10$ व्यक्ति दो नावों पर कितनी प्रकार से जा सकते हैं ताकि दोनों नावों पर  $5$ व्यक्ति रहें, जबकि यह माना गया है कि दो विशेष व्यक्ति एक ही नाव में नहीं जायेंगे

  • A

    $\frac{1}{2}{(^{10}}{C_5})$

  • B

    $2{(^8}{C_4})$

  • C

    $\frac{1}{2}{(^8}{C_5})$

  • D

    इनमें से कोई नहीं

Similar Questions

$25$ विद्यार्थियो की एक कक्षा से, $10$ का चयन एक भ्रमण-दल के लिए किया जाता है। $3$ विद्यार्थी ऐसे हैं, जिन्होंने यह निर्णय लिया है कि या तो वे तीनों दल में शमिल होंगे या उनमें से कोई भी दल में शामिल नहीं होगा। भ्रमण-दल का चयन कितने प्रकार से किया जा सकता है ?

कक्षा $10$ में $5$ छात्र, कक्षा $11$ में $6$ छात्र तथा कक्षा $12$ में $8$ छात्र है। यदि $10$ छात्रों को चुनने के तरीकों की संख्या, जिनमें से प्रत्येक कक्षा में से कम से कम $2$ छात्र हो तथा कक्षाओं $10$ और $11$ के $11$ छात्रों में से अधिक से अधिक $5$ छात्र हो, $100 \,k$ है, तो $k$ बराबर है ........ |

  • [JEE MAIN 2021]

$6$ व्यंजन व $5$ स्वरों से $4$ व्यंजन एवं $3$ स्वरों के कुल कितने शब्द बनाये जा सकते हैं

$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में

चार पत्ते एक ही प्रकार $(suit)$ के हैं ?

त्रिकों $(\mathrm{x}, \mathrm{y}, \mathrm{z})$, जहाँ $\mathrm{x}, \mathrm{y}, \mathrm{z}$ भिन्न ऋणोत्तर पूर्णांक हैं तथा $\mathrm{x}+\mathrm{y}+\mathrm{z}=15$ को संतुष्ट करते हैं, की संख्या है :

  • [JEE MAIN 2023]