The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is

  • A

    $0$

  • B

    $2$

  • C

    $4$

  • D

    more than $4$

Similar Questions

The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is

  • [JEE MAIN 2019]

The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

If $cosx + secx =\, -2$, then for a $+ve$ integer $n$, $cos^n x + sec^n x$ is

$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha  +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is