If $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, then the value of $\sin \theta $ is
$\frac{3}{5}$ or $1$
$\frac{{2}}{3}$ or $\frac{{ - 2}}{3}$
$\frac{4}{5}$ or $\frac{3}{4}$
$ \pm \frac{1}{2}$
If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is
Find the general solution of the equation $\sin 2 x+\cos x=0$
The equation, $sin^2 \theta - \frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}} = 1$$ -\frac{4}{{{{\sin }^3}\,\,\theta \,\, - \,\,1}}$ has :
The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is
If $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ and $x$ is the solution of the equatioin $y = 2\left[ x \right] + 2$ and $y = 3\left[ {x - 2} \right] ,$ where $\left[ x \right]$ denotes the integral part of $x,$ then $a$ is equal to :-