If $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, then the value of $\sin \theta $ is

  • A

    $\frac{3}{5}$ or $1$

  • B

    $\frac{{2}}{3}$ or $\frac{{ - 2}}{3}$

  • C

    $\frac{4}{5}$ or $\frac{3}{4}$

  • D

    $ \pm \frac{1}{2}$

Similar Questions

The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha  - 7\,{\sin ^2}\,\alpha  + 7\,\sin \,\alpha  = 2$ , is

  • [JEE MAIN 2014]

If $|k|\, = 5$ and ${0^o} \le \theta \le {360^o}$, then the number of different solutions of $3\cos \theta + 4\sin \theta = k$ is

If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is

The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is

If $\frac{{1 - {{\tan }^2}\theta }}{{{{\sec }^2}\theta }} = \frac{1}{2}$, then the general value of $\theta $ is